Repair-Resistant DNA Lesions

نویسندگان

  • Nicholas E Geacintov
  • Suse Broyde
چکیده

The eukaryotic global genomic nucleotide excision repair (GG-NER) pathway is the major mechanism that removes most bulky and some nonbulky lesions from cellular DNA. There is growing evidence that certain DNA lesions are repaired slowly or are entirely resistant to repair in cells, tissues, and in cell extract model assay systems. It is well established that the eukaryotic DNA lesion-sensing proteins do not detect the damaged nucleotide, but recognize the distortions/destabilizations in the native DNA structure caused by the damaged nucleotides. In this article, the nature of the structural features of certain bulky DNA lesions that render them resistant to NER, or cause them to be repaired slowly, is compared to that of those that are good-to-excellent NER substrates. Understanding the structural features that distinguish NER-resistant DNA lesions from good NER substrates may be useful for interpreting the biological significance of biomarkers of exposure of human populations to genotoxic environmental chemicals. NER-resistant lesions can survive to replication and cause mutations that can initiate cancer and other diseases. Furthermore, NER diminishes the efficacy of certain chemotherapeutic drugs, and the design of more potent pharmaceuticals that resist repair can be advanced through a better understanding of the structural properties of DNA lesions that engender repair-resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased gene-specific repair of cisplatin interstrand cross-links in cisplatin-resistant human ovarian cancer cell lines.

We have studied several aspects of DNA damage formation and repair in human ovarian cancer cell lines which have become resistant to cisplatin through continued exposure to the anticancer drug. The resistant cell lines A2780/cp70 and 2008/c13*5.25 were compared with their respective parental cell lines, A2780 and 2008. Cells in culture were treated with cisplatin, and the two main DNA lesions f...

متن کامل

DNA polymerase δ-dependent repair of DNA single strand breaks containing 3′-end proximal lesions

Base excision repair (BER) is the major pathway for the repair of simple, non-bulky lesions in DNA that is initiated by a damage-specific DNA glycosylase. Several human DNA glycosylases exist that efficiently excise numerous types of lesions, although the close proximity of a single strand break (SSB) to a DNA adduct can have a profound effect on both BER and SSB repair. We recently reported th...

متن کامل

An Inverse Switch in DNA Base Excision and Strand Break Repair Contributes to Melphalan Resistance in Multiple Myeloma Cells

Alterations in checkpoint and DNA repair pathways may provide adaptive mechanisms contributing to acquired drug resistance. Here, we investigated the levels of proteins mediating DNA damage signaling and -repair in RPMI8226 multiple myeloma cells and its Melphalan-resistant derivative 8226-LR5. We observed markedly reduced steady-state levels of DNA glycosylases UNG2, NEIL1 and MPG in the resis...

متن کامل

APE1-dependent repair of DNA single-strand breaks containing 3′-end 8-oxoguanine

DNA single-strand breaks containing 3'-8-oxoguanine (3'-8-oxoG) ends can arise as a consequence of ionizing radiation and as a result of DNA polymerase infidelity by misincorporation of 8-oxodGMP. In this study we examined the mechanism of repair of 3'-8-oxoG within a single-strand break using purified base excision repair enzymes and human whole cell extracts. We find that 3'-8-oxoG inhibits l...

متن کامل

A novel trinuclear platinum complex overcomes cisplatin resistance in an osteosarcoma cell system.

Multinuclear platinum compounds have been designed to circumvent the cellular resistance to conventional platinum-based drugs. In an attempt to examine the cellular basis of the preclinical antitumor efficacy of a novel multinuclear platinum compound (BBR 3464) in the treatment of cisplatin-resistant tumors, we have performed a comparative study of cisplatin and BBR 3464 in a human osteosarcoma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2017